Inducible gene targeting in mice using the Cre/lox system.

نویسنده

  • B Sauer
چکیده

Molecular techniques now allow the design of precise genetic modifications in the mouse. Not only can defined nucleotide changes be engineered into the genome of the mouse, but genetic switches can be designed to target expression or ablation of any gene (for which basic molecular information is available) to any tissue at any defined time. These strategies promise to contribute substantially to an increased understanding of individual gene function in development and pathogenesis. A powerful tool, both for the design of such genetic switches and for speeding the creation of gene-modified animals, is the Cre site-specific DNA recombinase of bacteriophage P1. Precise DNA rearrangements and genetic switches can be efficiently generated in a straightforward manner using Cre recombinase. In conjunction with inducible systems for controlling Cre expression and function, these recombination-based strategies are likely to have a profound impact on developmental biology and the generation of useful animal models of human disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites.

The Cre-lox system is an important tool for genetic manipulation. To promote integrative reactions, two strategies using mutant lox sites have been developed. One is the left element/right element (LE/RE)-mutant strategy and the other is the cassette exchange strategy using heterospecific lox sites such as lox511 or lox2272. We compared the recombination efficiencies using these mutant lox site...

متن کامل

Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants

Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...

متن کامل

Efficient induction of productive Cre-mediated recombination in retinal pigment epithelium

PURPOSE To dissect gene functions in the retinal pigment epithelium (RPE), we previously generated a tetracycline-inducible RPE-specific Cre mouse line. Although this Cre mouse line was useful for several conditional gene targeting studies that were conducted by different laboratories, its potential has not been fully exploited, presumably due to a lack of knowledge or procedure for inducing Cr...

متن کامل

Regulation of Cre recombinase activity by the synthetic steroid RU 486.

To create a strategy for inducible gene targeting we developed a Cre-lox recombination system which responds to the synthetic steroid RU 486. Several fusions between Cre recombinase and the hormone binding domain (HBD) of a mutated human progesterone receptor, which binds RU 486 but not progesterone, were constructed. When tested in transient expression assays recombination activities of all fu...

متن کامل

Inducible Cre mice.

The Cre/lox site-specific recombination system has emerged as an important tool for the generation of conditional somatic mouse mutants. This method allows one to control gene activity in space and time in almost any tissue of the mouse, thus opening new avenues for studying gene function and for establishing sophisticated animal models of human diseases. A major technical advance in terms of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 1998